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The coherent optical control of polariton modes is studied in time-resolved pulse-transmission experiments
on a ZnSe/ZnSSe heterostructure. Using a phase-locked pulse pair at low excitation intensity it is shown that
the polariton modes, their quantum beat structure, and the radiative decay can be coherently manipulated.
Calculations based on a microscopic polariton theory can explain the measured findings without the use of fit
parameters. Additionally, the decay times of the coherent polarization, which depend on the involved polariton
modes and their radiative decay, are extracted on the basis of a phenomenological model.

DOI: 10.1103/PhysRevB.73.235345 PACS number�s�: 71.36.�c, 78.47.�p

I. INTRODUCTION

The coherent control of the excitonic polarization in semi-
conductor heterostructures has been a field of intense re-
search in the last years.1–12 It provides the possibility of ma-
nipulating elementary quantum-mechanical excitations on
ultrashort time scales with regard to both their amplitudes
and relative phases. The applications of coherent control are
not only limited to fundamental studies of the carrier and
polarization dynamics on ultrashort time scales, which are
strongly governed by correlation effects. Coherent-control
schemes are also prerequisites for the successful implemen-
tation of quantum-logic schemes in the strongly emerging
field of quantum information processing.13 For semiconduc-
tor quantum-well structures with large exciton binding ener-
gies and a significant spectral separation of heavy-hole and
light-hole excitons, the excitation of one single excitonic
transition is possible with ultrashort laser pulses even if they
possess spectral bandwidths in the order of several to several
tens of nanometers.

However, the situation is significantly complicated if the
width of the quantum-well layer is increased up to dimen-
sions of several exciton Bohr radii. Then, propagation effects
strongly modify the light-matter interaction in the semicon-
ductor heterostructure. One consequence is the occurrence of
further resonances associated with so-called center-of-mass
�COM� quantized exciton-polaritons.14–16 In the active layer
the k-vector in propagation direction, which is considered to
be perpendicular to the wide-quantum-well layer, is quan-
tized due to the finite thickness of the layer according to k
=n� /d �n integer, d layer thickness� provided that one as-
sumes the simplified picture of decoupled exciton relative
and COM motion. For layer thicknesses d in the range of a
few exciton Bohr radii, this leads to several COM quantized
exciton-polariton resonances being separated by a few
millielectron volts, which are thus simultaneously excited by
ultrashort laser pulses. Consequently, the coherent excitation
of more than one excitonic resonance significantly compli-
cates the response of the semiconductor system to the optical
excitation.

This paper addresses the question how optical coherent-
control schemes work in the system of multiple exciton-
polariton resonances. A separate manipulation of the differ-

ent polariton resonances in the low-density regime should be
possible but has been analyzed neither experimentally nor
theoretically thus far. In this paper, we present experimental
studies and microscopic simulations of the optical coherent
control of COM quantized exciton polariton modes in a
ZnSe-based heterostructure. We find that under low excita-
tion densities a separate manipulation of the different polar-
iton modes can be achieved that results in strong modifica-
tions of the quantum-beat structure of the transient optical
polarization. Additionally, we observe a significant change of
the decay time of the coherent polarization, both in experi-
ment and microscopic theory, as different polariton modes
are amplified or diminished in the coherent control process.
By use of a simple phenomenological model, we are able to
quantify the contributions of the different polariton modes to
the overall signal and to extract the decay time of the coher-
ent polarization. The comparison to the simulations based on
a microscopic theory reveals that the change of the decay
time is due to the different radiative decay rates of the po-
lariton modes being excited with different relative intensities
in the coherent-control experiments.

II. EXPERIMENTAL SETUP

The coherent control of polariton modes is studied on a
25 nm ZnSe layer embedded in two 1 �m ZnSSe barriers.
The sample was pseudomorphically grown by molecular-
beam epitaxy on a �001� GaAs substrate. To realize the ex-
periments in transmission geometry, the substrate was re-
moved by chemical etching. The laser pulses were generated
by a frequency-doubled mode-locked Ti:sapphire laser. The
single pulses had a full width at half maximum �FWHM� of
120 fs at a repetition rate of 82 MHz. The selected spectral
position ���440 nm� and the spectral width of the pulses
allowed for a simultaneous excitation of the first four heavy-
hole exciton-polariton resonances labeled here as hh1 to hh4.
To achieve coherent control, a phase-locked pulse pair was
generated by use of an actively stabilized Michelson interfer-
ometer. The time delay between two phase-locked pulses
was tint= tint

0 +�tint. Here, tint
0 denotes the basic temporal sepa-

ration of the two phase-locked pulses in the femtosecond
range. The fine tuning �tint was varied with an accuracy of
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40 as. The time resolved measurements were performed us-
ing an up-conversion technique �UPC� for which the signal
transmitted through the sample was spatially overlapped
with an infrared reference pulse ���880 nm� in a
�-barium-borate crystal. The sum-frequency signal ��
�293 nm� generated due to this overlap was detected by a
photomultiplier. The reference pulse was temporally scanned
over the transmitted signal by varying the time delay tUPC
between them. The time resolution of the UPC technique was
measured to be 100 fs. All measurements were carried out at
a temperature of 4 K.

III. MICROSCOPIC THEORY

According to the experimental setup, we consider a semi-
conductor layer in a slab geometry, with homogeneous ex-
tension in the x-y plane and with a finite spatial extension in
the z direction.16 For the optical excitation, a pair of incom-
ing phase-coupled Gaussian light pulses propagating in
the z direction is assumed to be generated by an external
source outside the sample. As outlined in Ref. 17, Maxwell’s
equations are solved self-consistently together with the
equation of motion for the induced material polarization
P�z , t�= P�z , t�e with the polarization vector e of the incom-
ing electric field E�z , t�. In the linear optical regime and for
excitation near the band-gap energy, the semiconductor re-
sponse to the external electromagnetic field is exclusively
determined by the excitonic transition amplitude
pk�ze ,zh , t�= ��k

h�zh��k
e�ze�� with the electron �k

e�ze� and hole
�k

h�zh� annihilation operators. The transition amplitude is
given as a function of the in-plane momentum k= �kx ,ky� to
make use of the in-plane homogeneity of the given system.
The real-space formulation in the z direction allows to in-
clude the spatial inhomogeneity of the heterostructure. The
macroscopic polarization of the system is given by

P�z,t� = �
k

deh
* pk�z,z,t� , �1�

with the local dipole matrix element deh�ze−zh�
=deh��ze−zh� and the excitonic transition amplitude
pk�ze ,zh , t� for equal electron and hole z coordinates. Using
an expansion in terms of excitonic eigenstates 	m�k ,ze ,zh�,
the equation of motion for the excitonic transition amplitude

pk�ze,zh,t� = �
m

pm�t�	m�k,ze,zh� �2�

leads to18

i 

d

dt
pm�t� = ��m − i��pm�t� − deh� �dzE�z,t��

k
	m

* �k,z,z�	 .

�3�

Then, the time evolution of the excitonic polarization �1� can
be determined by the equation of motion �3� for the coeffi-
cients pm�t�. The source term for each coefficient pm�t� is
given by the dipole coupling constant deh and the projection
of the electric field amplitude E�z , t� to the corresponding
mth excitonic eigenstate 	m�k ,ze ,zh�. A phenomenological

dephasing constant �=0.11 meV for the excitonic polariza-
tion has been included, which is in accordance with the ho-
mogeneous broadening observed in Ref. 19 for a similar
sample. The solution of the homogeneous part of Eq. �3� can
be given in terms of damped, oscillating solutions for the
coefficients pm�t� for each contributing eigenstate m with fre-
quency 
m=�m /
. The exciton eigenenergies �m and eigen-
functions 	m�k ,ze ,zh� fulfill the eigenvalue equation

�
k�

Hkk�
X 	m�k�,ze,zh� = �m	m�k,ze,zh� . �4�

This eigenvalue equation is evaluated according to the mi-
croscopic physical boundary conditions of the system, so that
the exciton wave functions vanish if either the electron or the
hole reaches one of the semiconductor surfaces. These
boundary conditions are exactly fulfilled for each single ex-
citon wave function 	m�k ,ze ,zh�. This is in contrast to pre-
vious formulations20,21 where an expansion in terms of bulk
exciton wave functions with appropriate boundary conditions
is used. In this case, the boundary conditions for the exci-
tonic states are only approximately fulfilled. The excitonic
Hamiltonian Hkk�

X for the slab geometry is given by

Hkk�
X = ��k,ze

e + �k,zh

h ��kk� − Vkk�
zezh. �5�

The one-particle energy operators in effective-mass approxi-
mation are

�k,z
i =


2k2

2mi

* −


2

2miz
*

�2

�zi
2 +

Egap

2
+ Vext

i �zi� , �6�

where i� �e ,h�. Here me

* , mez

* and mh

* , mhz

* denote the effec-
tive electron and hole masses for in-plane �
� and z direction,
respectively. The external potential Vext

i �z� is used to model
the finite-height band offsets in the heterostructure, that are
calculated along the guidelines in Ref. 16 with a sulfur con-
tent of 7% in the ZnSxSe1−x barrier material. The latter has
been experimentally determined by x-ray diffraction mea-
surements. The Coulomb matrix elements are given by

Vkk�
zz� =

e0
2

2�0nbg
2

e−
k−k�

z−z�



k − k�

, �7�

with 
k−k� 
 =�k2+k�2−2kk� cos�	k−	k��. Here e0 is the
electronic charge, �0 is the vacuum dielectric constant, and
nbg denotes the nonresonant background refractive index. All
material parameters are taken from Ref. 16. For the investi-
gated system, only excitons with in-plane s symmetry �rota-
tional invariance around the z axis� are excited in linear op-
tical experiments. This is taken into account by an in-plane
angular momentum decomposition that yields the excitonic
Hamiltonian �5� projected to the in-plane s subspace.17,18

Furthermore, according to the experimentally excited and in-
vestigated spectral window, it is sufficient to include a finite
number of the lowest-energy heavy-hole exciton states in the
expansion �2�.16,18

As mentioned above, the dynamics of the optically
induced macroscopic polarization P�z , t�
=deh

* �m�pm�t��k	m�k ,z ,z�� is self-consistently coupled to
the electromagnetic fields, which obey Maxwell’s equations.
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Therefore, in addition to the phenomenologically introduced
dephasing constant � in Eq. �3�, the radiative decay22,23 of
the excitonic polarization is also correctly included in the
theoretical description. The discussion of the radiative decay
and the influence of the coherent control on the radiative
decay times will be presented, in detail, in Sec. IV which
devoted to the experimental and theoretical results.

IV. RESULTS AND DISCUSSION

A. Experiment and microscopic theory

The linear transmission spectrum of the 25 nm ZnSe het-
erostructure is shown as solid line in Fig. 1�a�. The spectrum
is dominated by a pronounced mode structure due to the
COM quantization of the heavy-hole �hh� exciton polariton
motion. On the high-energy side an absorption peak due to
the light-hole �lh� exciton is seen. The dotted line in Fig. 1�a�
shows the spectrum of the single laser pulse with low exci-
tation energy of 0.1 pJ after having passed through the
sample. It demonstrates that the coherent pulse excites the
sample mainly in the spectral region of the resonances
hh1 to hh4. The simultaneous coherent excitation of four po-
lariton modes causes beat structures on the time resolved
transients, shown in Fig. 1�b�. For tUPC�0.5 ps, the beat
structure is superimposed to the signal emitted by the decay-
ing coherent polarization. The complicated nature of the
beating behavior is caused by the overlay of different funda-

mental oscillating signals. The corresponding fundamental
beat periods can be calculated according to

Tbeat = h/�E , �8�

where �E is the energy splitting between two polariton
modes. The energy differences between various polariton
modes and the corresponding calculated fundamental beat
periods are shown in Table I. Because of the large oscillator
strength of the hh1 ground mode, the beatings between the
hh1 mode and the higher modes �hh2 to hh4� dominate the
modulation of the time-resolved signal in Fig. 1�b�. The beat-
ings between the higher modes �the last three beat periods in
Table I� are insignificant due to their negligible oscillator
strengths in comparison to that of the hh1 ground mode.

Fröhlich et al.24 first observed 1s-exciton-polariton beats
with increasing period due to the interference of ordinary and
extraordinary waves propagating in CuO2. The origin of the
beats reported here are interferences of the coherent polar-
izations of polariton states of the lower polariton branch cre-
ated by the k-quantization. The hh-exciton polariton modes
can be regarded as a system of resonances with a common
ground state. Using a phase-locked pulse pair, the polariton
mode polarizations can be manipulated. It is expected that
the beat structure, which modulates the time-resolved signal,
strongly depends on the delay time between the phase-locked
pulses. To achieve a situation for which the beating between
the hh1 and hh3 modes �these modes have larger oscillator
strengths than all the other modes� can be effectively coher-
ently controlled, the basic delay time tint

0 was adjusted to
450 fs corresponding to half the hh1–hh3 beat period. In or-
der to perform the coherent control, the fine-tuning delay
�tint was varied over a range of a few femtoseconds. For
different values of �tint, time-resolved transients were mea-
sured; see Fig. 2�a�. The signal intensity is encoded in a
logarithmic gray scale. For comparison, calculated time-
resolved signals based on the microscopic theory are shown
in Fig. 2�b�. The calculated transients exhibit the same be-
havior as found in the experiment with respect to the inten-
sity decay over three orders of magnitude as well as regard-
ing the oscillation periods observable along the �tint axis.
Because of the limited contrast achievable in the experiment
the measured contrast ratio is smaller than the theoretical
one. However, it can clearly be stated that the microscopic

TABLE I. Experimental �according to Fig. 1�a�� and theoretical
�according to Fig. 4�c�� energy differences between polariton
modes, and corresponding calculated beat periods.

Interfering
modes

�E �meV� Tbeat �ps� �E �meV� Tbeat �ps�
Experimental Theoretical

hh1–hh2 1.65 2.51 1.64 2.52

hh1–hh3 4.45 0.93 4.37 0.95

hh1–hh4 8.28 0.50 7.92 0.52

hh2–hh3 2.8 1.48 2.73 1.52

hh2–hh4 6.63 0.62 6.28 0.66

hh3–hh4 3.83 1.08 3.55 1.17

FIG. 1. �a�: Linear transmission spectrum of 25 nm ZnSe het-
erostructure �solid line� and spectral profile of the excitation pulse
�dotted line� after having passed through the sample. �b� Time re-
solved single-pulse transmission.
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model reproduces the measured features very well without
use of fitting parameters.

In Figs. 2�a� and 2�b� cuts along the �tint axis for fixed
tUPC represent so-called switching curves, which show oscil-
lations due to the continuous change between constructive
and destructive interference of the coherent polarization in
dependence on the fine tuning. The oscillation period is
given by that of the polariton modes according to T=h /Ehh
�T�1.5 fs�. The switching curves observed for different tUPC

values exhibit different phases and contrast ratios as it is
demonstrated for three typical examples in Fig. 3. The sig-
nals for tUPC�5 ps �solid lines� and tUPC�7 ps �dashed
lines� display opposite phases, while the switching curve at
tUPC=6.5 ps �dotted lines� shows a strongly reduced contrast
ratio. It is remarkable that the contrast ratio at tUPC�7 ps is
larger than that at tUPC�5 ps and thus exhibits an oscillating
behavior as a function of tUPC. This observation can be ex-
plained through the complex beating between the four polar-
iton modes, which leads to a subsequent switch-on and -off
of the polarization of the different modes involved along the
variation of �tint.

The change of the beat structures in dependence on �tint is
clearly seen by looking at cuts along the tUPC axis in the
3D-plot of Fig. 2. In Figs. 4�a� and 4�b�, measured �solid
lines� and calculated �dotted lines� transients extracted from
the three-dimensional �3D� plots at two fine-tuning delays
�tint are exemplarily compared. The beatings between the
involved polariton modes are superimposed to the signal of
the decaying coherent polarization. The variations in the
modulation observed in the transients result from polariton
beats that are different in both cases. The comparison of the

measured transients without �Fig. 1�b�� and with coherent
control �Figs. 4�a� and 4�b�� demonstrates that the beat struc-
ture is strongly manipulated by the phase-locked pulse pair.

The Fourier transforms of the transients yield the spectra
of the transmitted phase-locked pulse pair and provide direct
information about the excitation of particular polariton
modes. Figure 4�c� shows the Fourier spectra calculated with
the microscopic theory. It can be seen that the shape of the
spectra and thus the magnitude of the absorption at particular
polariton resonances strongly depends on the time delay be-
tween the phase-locked pulses. In the spectrum calculated for
�tint=0.3 fs �solid line�, the hh1, hh4 polariton modes are
diminished and the hh2 mode is completely suppressed by
the phase-locked pulse pair. In contrast, in the spectrum cal-
culated for �tint=0.6 fs �dotted line�, the hh3 polariton mode
only is suppressed.

According to this discussion, the experimental and theo-
retical transients at �tint=0.3 fs �Fig. 4�a�� are dominated by
the beat period Tbeat�1 ps corresponding to the hh1–hh3 and
hh3–hh4 beatings �see Table I�. The other beat period
Tbeat�0.5 ps related to the hh1-hh4 beating is observed as
small “humps” on the transients. The hh1–hh4 beat period is
less well observable on the measured than on the calculated
transient. The hh2 mode is suppressed strongly by the phase-
locked pulse pair.

The transients for �tint=0.6 fs are shown in Fig. 4�b�.
They exhibit a superposition of two beat structures with beat
periods Tbeat�3 ps and Tbeat�0.5 ps, corresponding to the
hh1–hh2 and hh1–hh4 interferences, respectively �see Table
I�. Here, in contrast to the case of �tint=0.3 fs, the hh3 mode
is suppressed by the phase-locked pulses. For both cases, the
experimental and theoretical transients clearly demonstrate
the selective coherent control of the polarization of polariton
modes.

It seems that in all cases the hh1 ground mode is more or
less involved in the beat structure due to its dominating os-
cillator strength. Even for the case of the hh1 ground mode

FIG. 2. Three dimensional plots of the time-resolved transmitted
intensity as a function of the fine-tuning delay �tint between the two
phase-locked pulses for tint

0 =450 fs: �a� Experiment and �b� micro-
scopic theory.

FIG. 3. Cuts from Fig. 2 at different tUPC: �a� experiment and �b�
microscopic theory.
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diminished by the phase-locked pulses �solid line in
Fig. 4�c��, its magnitude is still sufficient for a distinct con-
tribution to the beat structure.

Figures 4�a� and 4�b� show a good agreement between the
measured and microscopically calculated transients with re-
spect to the polarization decay and to the beat amplitudes.
Regarding the beat periods, the microscopic calculations
well reproduce the experimental findings over two orders of
pulse-transmission intensity up to tUPC�4 ps. After this
time, a phase shift occurs between the measured and the
calculated beat periods. We attribute this deviation to the fact
that the linear transmission of the ZnSe/ZnSSe sample is
further influenced by the ZnSSe cladding layers, which form
an outer Fabry-Perot resonator for the optical field. Further-
more, the outer sample-air surface might slightly modify the
transmission spectra and, hence, the beat structure. The in-
fluence of the ZnSSe barriers on the polariton resonances is
not taken into account to simplify in the microscopic calcu-
lations. Therefore, the amplitudes of various modes can dif-
fer between experiment and calculations. For example, the
calculated spectrum of the pulse pair for �tint=0.3 fs �solid
line in Fig. 4�c�� demonstrates the excitation of the hh4 po-

lariton mode, and the corresponding calculated transient
�dotted line in Fig. 4�a�� shows the hh1–hh4 beating super-
imposed to the hh1–hh3 one. In the experiment, the absorp-
tion at the hh4 polariton mode may have been diminished by
the Fabry-Perot effect, and the hh1–hh4 beat structure is not
observed �Fig. 4�a�, solid line�. Nevertheless, a good agree-
ment is achieved between experimental and microscopically
calculated curves.

B. Experiment and phenomenological model

To allow for additional and more intuitive insight into the
contributions of the different polariton modes to the overall
signal, we use a phenomenological model to fit the transients
and to extract the decay time of coherence. Within this
model, it is also fairly easy to obtain simple quantitative
numbers of the mode amplitudes involved for the different
two-pulse interference cases. Because of the changes of the
beat structures in dependence on �tint, it is difficult to extract
the polarization decay directly from the measured transients.
The knowledge of the polarization decay time allows one to
discuss the influences of dephasing and of radiative decay.
The phenomenological model starts from the damped oscil-
lations of the coherent polarization Pi of an excited mode
with resonance energy Ei. The real part is written as

Pi�t� = Aie
−�t/�� cos�
it� , �9�

with the mode frequency 
i=Ei /
, the mode amplitude
Ai=�Si �with Si being the area under the corresponding ab-
sorption peak of the polariton resonance, i.e., the oscillator
strength�, and � the decay time of the coherent polarization.
The coherent polarization decay of all excited modes can be
described for the low-excitation case as a linear superposi-
tion of the four involved polariton modes, assuming the same
damping and the same phase for all excited modes. The mea-
sured time resolved pulse-transmission intensity I is propor-
tional to the square of the induced polarization,

I�t� � e−�2t/���
i=1

4

�Ai cos�
it��2. �10�

If the coherent-control technique is applied to enhance or
suppress selected polariton modes, the relative values of the
mode amplitudes Ai change and therefore strongly depend on
the delay time tint between the phase-locked pulses.

The oscillator strengths of the resonances hh1 to hh4 can
be experimentally determined from the linear transmission
spectrum of the sample �Fig. 1�a�, solid line�. From a fit with
Lorentz lines, we obtain S1 :S2 :S3 :S4=1:0.09:0.4:0.23. To
reproduce the transient measured with coherent control at
�tint=0.3 fs, where both the hh2 and hh4 polariton modes are
suppressed by the phase-locked pulse pair, the relative ab-
sorption of these modes is taken as being tenfold smaller
with respect to their original values. This assumption is
based on the experimentally achievable contrast between the
constructive and destructive interference cases. For the simu-
lation of the transient measured at �tint=0.6 fs where only
the hh3 polariton mode is suppressed, this mode is taken as
being tenfold smaller than its original value. The relative

FIG. 4. �a,b� Time-resolved transients at �tint=0.3 fs �a� and
�tint=0.6 fs �b�. Solid line: experiment. Dashed line: microscopic
theory. �c�: Calculated spectra of the phase-locked pulse pair after
having passed through the sample at �tint=0.3 fs �solid line� and
�tint=0.6 fs �dashed line�.
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mode amplitudes Ai without and with coherent control are
shown in Table II.

The dotted curves in Fig. 5 show respective calculations
using Eq. �10� and demonstrate good agreement with the
experiment regarding the polarization decay and the beat pe-
riods. Since the calculated beat amplitudes strongly depend
on the relation between the mode amplitudes, the deviation
in Fig. 5�b� may be due to uncertainties in the estimation of
the amplitude of the suppressed mode. Moreover, it is ex-
pected that deviations increase if more interfering mode po-
larizations are involved.

By use of the phenomenological model, the decay time of
the coherent polarization is estimated to be �=2.6 ps for the
transient at �tint=0.3 fs �dotted line in Fig. 5�a��. A smaller
value of �=2 ps was found for the transient measured at
�tint=0.6 fs �dotted line in Fig. 5�b��. The polarization decay
time � consists of two contributions, one being due to
dephasing and the other due to the radiative decay of the
coherent polarization. A mode with a larger oscillator
strength has a faster radiative decay. Thus, suppression of
such a mode causes a slower decay of the coherent polariza-
tion. As has been already stated in Sec. IV A, the hh1 ground

mode possesses a dominant influence on the coherent polar-
ization decay due to its dominating oscillator strength. The
calculated spectra of the phase-locked pulse pair in Fig. 4�c�
show that the absorption at the hh1 ground mode is weakened
for �tint=0.3 fs �solid line� in comparison to the case
�tint=0.6 fs �dotted line�. This explains the longer coherence
decay time for the former case. This result can be understood
in the framework of the fully microscopic theory assuming
the same dephasing while different radiative decay times of
various polariton modes follow within the self-consistent
treatment.

V. CONCLUSION

In this paper we have presented a demonstration of the
coherent control of the polarizations of the heavy-hole
exciton-polariton modes and their beatings in time-resolved
pulse-transmission experiments using a phase-locked pulse
pair, which is of interest for further applications as well as
for studying the polariton dynamics. This method was suc-
cessfully used to switch the polarizations of selected polar-
iton modes and to manipulate the corresponding quantum
beat structures in the transients. A microscopic polariton
model that avoids additional boundary conditions was used
to successfully simulate the experimental results. The model
takes into account both dephasing and radiative decay for the
determination of the coherence decay time. Therefore, it is
expected that the coherent manipulation of involved modes
results in a change of the coherence decay time. The simu-
lations are in good agreement with the observed behavior of
the measured coherent switching curves and with the mea-
sured transients over a range of two orders of magnitude of
the intensity. Moreover, the polarization decay and beat am-
plitudes of the transients measured and calculated are in
good agreement, too. Small deviations and a phase shift after
4 ps may be due to the influence of the outer Fabry-Perot
resonator formed by the cladding layers, which was not
taken into account in the microscopic polariton model. Ad-
ditionally, a phenomenological model was used to extract the
polarization decay times from the coherently controlled tran-
sients. To simulate the coherent control of polariton modes,
the amplitude values of the suppressed modes were reduced
by a factor of 10, as obtained from the experiment. If the
hh1–hh3 interference dominates the transient, the hh1 mode
is slightly diminished and the hh2 and hh4 modes are sup-
pressed, the polarization coherence decay time was found to
be �=2.6 ps. If the hh1–hh2 and hh1–hh4 interferences occur
on the transient, and only the hh3 mode is suppressed com-
pletely, the decay time was found to be �=2 ps. The results
clearly show that decay time of the coherent polarization
and, hence, the radiative decay of the ensemble of excited
polariton modes can be coherently manipulated.
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TABLE II. Relative mode amplitudes without coherent control
�according to Fig. 1�, and with coherent control for �tint=0.3 fs and
for �tint=0.6 fs.

Relative mode
amplitude

Without coherent
control

With coherent control

�tint=0.3 fs �tint=0.6 fs

A1
�S1=1 �S1=1 �S1=1

A2
�S2=0.3 �0.1S2=0.09 �S2=0.3

A3
�S3=0.63 �S3=0.63 �0.1S3=0.2

A4
�S4=0.48 �0.1S4=0.15 �S4=0.48

FIG. 5. Real-time resolved transients at �a� �tint=0.3 fs and �b�
�tint=0.6 fs. Solid line: experiment. Dashed line: phenomenologi-
cal model.
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